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The Finite Element - Transfer Matrix (FETM) method has been developed to reduce 

the computations involved in analysis of structures. This widely accepted method, 

however, has certain limitations, and does not address the issues of control design. To 

overcome these, a modification of FETM method has been developed. The new method 

easily produces reduced models that are tailored toward subsequent control design. Other 

features of this method are its ability to (i) extract open loop frequencies and mode shapes 

with less computations, (ii) overcome limitations of the original FEW method, and (iii) 

simplify the design procedures for output feedback, constrained compensation, and 

decentralized control. 

This report presents the development of the new method, generation of reduced 

models by this method, their properties, and the role of these reduced models in control 

design. Examples are included to illustrate the methodology. 
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I. INTRODUCTION 

The straightforward applications of the existing theories to control of flexible 
structures is hindered by the dimension of their mathematical models. The control engineers 
have attempted to resolve this problem by resorting to some model reduction scheme. The 
control system that is designed based upon this reduced model is known to cause the 
detrimental "spill over" problems due to model errors, in general* . On the general topic of 
model reduction, many schemes have been developed which attempt to minimize model 
errors of one form or another. In the field of flexible structures, in addition to the structural 
analysts' approach [2] whereby lower natural frequencies are retained, there is the truncation 
scheme based on performance sensitivity measures of the closed loop modes [3,4], modal 
cost analysis [5 ] ,  and the residual flexibility procedure [6] which retains the static 
contributions of the deleted modes. With the exception of a few [3-51, all these schemes are 
based upon an invalid assumption that the modeling/model-reduction and the control design 
problems are separable. Once an attempt is made to integrate these two insepatable problems, 
it becomes evident that a good design philosophy can be generated only by employing the 
modeling techniques of structural analysts and the control theory of control engineers 
simultaneously. The need for control/structure interaction has been recognized as evidenced 
by special sessions in related conferences [7,8], and the first NASA/DOD Conference tomlly 
devoted to this subject [9]. Number of papers, in addition to Ref.[lO], supporting this 
subject are contained in Ref.[ 111. Such an integration of the two disciplines forms the basic 
objective of this research effort. 

There exist several methods in computational structural mechanics that aid and 
improve the analysis and design of structures; Noor and Alturi offer a comprehensive survey 
of such methods in Ref.[12]. The methods that are of interest to the current investigation are 
those which produce lower order models; control engineers need these lower order models in 
order to overcome the "dimension problem" mentioned above. A method that seems to be 
well suited for this task is the finite element transfer matrix (FETM) method [13-201. The 
FETM method has been developed to overcome the problem of large size matrices that are 
encountered while modeling flexible structures within acceptable accuracy. The main 
advantage of the FETM method is that it yields a reduced set of equations by operating at the 
(finite-) elemental level. The advantages offered by the FETM method are not fully utilized in 
the area of control design. This is since the E T M  method has been developed primarily for 
the open loop analysis by structural analysts and has not yet reached the control community. 

* It has been pointed out in Ref.[l] that this may not always be the case. 
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The current research effort is an attempt to advance the FETM method, along with 
necessary modifications, to the control community as a viable tool for integrating structural 
modeling and control design phases. With a brief review of the FETM method and its 
limitations, Chapter 11 presents a new method that overcomes the limitations of the FETM 
method. Chapter 11 deals only with the extraction of natural frequencies and mode shapes. 
Chapter III discusses the possible role of this new method in control design with some 
illustrative examples. The report is concluded in Chapter IV with recommendations and 
directions for future research. 
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11. A NEW METHOD BASED ON FETM 

The finite element technique is the most versatile tool in analyzing dynamic response 
problems of complex structures, particularly in evaluating natural frequencies and mode 
shapes. In order to describe a structure with good accuracy, it is necessary to divide the 
structure into a very large number of elements which in turn necessitates a large number of 
degrees of freedom (dof). This leads to large mass and stiffness matrices requiring significant 
amount of computer time to process. Consequently, alternative methods for reduction of the 
number of dof associated with a given structure have been developed. One of the most effective 
methods of order reduction which appears to be compatible with activebcontrol is the finite 
element transfer matrix (FETM) method [ 131. 

The transfer matrix method is based on the selection of a state vector which is 
transmitted across the structure upon multiplication by a transfer matrix - the state vector 
consists of the dof and the generalized nodal forces along a section. Realizing that the number 
of dof in a finite element analysis of a structure can be considerably reduced by combining with 
the transfer matrix approach (which is most efficient when it is used along a dominant 
direction of a 'chain-like' structure), Dokainish [13] was the first to develop a combined 
method which exploited the best features of both the methods. He was able to show that the 
FETM method led to a frequency determinant of size 18 by 18, while the standard finite 
element technique produced a 108 by 108 determinant, the number of nodes being the same in 
both cases. The main advantage of the FETM method is that it yields a reduced set of equations 
by operating at the elemental level. 

There are two limitations of the FETM method of Dokainish : (1) the method is 
applicable only to 'chain like' structures (these include beams and rectangular plates, but not 
circular plates), and (2) it requires the number of dof along the edges of all substructures to be 
the same. Several authors [ 14-20] have proposed means to overcome the second limitation by 
incorporating certain approximations. In these modified methods, though the second limitation 
of the FETM method is reduced, it is not completely eliminated. In what follows, we briefly 
discuss the FETM method of Dokainish, and present our new method, and conclude this 
chapter with an example. 

2.1 Brief Review of FETM method 

The transfer matrix method is generally associated with the concept of stiffness. 
Pestel and Lechie [21] demonstrated that for one-dimensional structural members such as 
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beams, the transfer matrix could be derived from the stiffness matrix. Dokainish [13] was 
the first to suggest a combined FETM method. He recognized that the transfer matrix method 
could be extended to two-dimensional chain like structures by deriving the transfer matrix for 
a plate strip from the corresponding stiffness matrix. Since the publication of Jhkainish's 
paper, several authors (notably [ 14-20]) have proposed refinements and extensions of the 
FETM method. All of these authors derive the transfer matrix from the stiffness matrix in 
much the same fashion as Dokainish. This derivation, following that of Ref.[20], is 
S- - below. 

The equation of motion of a structure can be written using a dynamic stiffness matrix 

se  as 

ses = f ;  S e a K - a % l e  e ; 1 

where & is the stiffness matrix, & is the mass matrix, and o is a n'atural frequency of the 
structure. Here qe are the nodal displacements and fare the nodal forces. The standard finite 
element technique extracts the natural frequency o by setting IS1 = 0, where S is a submatrix 
of S, obtained after enforcing the boundary conditions that require some of the dof to be 
zero. Note that the size of this determinant is as large as the number of the total free dof used 
to describe the structure. 

Consider now a structure which consists of N substructures. The dynamic stiffness 
equations of each structure can be obtained as in Eqn.(2.1) by employing finite element 
techniques. These equations for the ith substructure can be partitioned as 

where f denotes the internal generalized forces; the subscripts '1' and 'r' refer to quantities on 
the left and right boundaries of the substructure!. Note the single subscripts on the diagonal 
submatrices $ and S i  In writing Eqn.(2.2) we have assumed that either there are no interior 

nodes or the inmior nodal displacements have been eliminated as mentioned in Ref.[21]. The 
transfer matfix Ti for the ith substructure is then found by manipulating Eqn.(2.2) to yield 

(2.3a) 

or simply 
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i r x ;  = x* . (2.3b) 

Note the definition of the state vector 4 at the right boundary. Now for the adjacent (i+l)th 

substructure, equilibrium and continuity of displacements quire that 
i+l i 

XI = xr . 
Equations (2.3b) and (2.4) are then combined to give 

i+l = T'+l 
xr 

Extending Eqn.(2.5) to N substructures results in 

xr = T{ ; T e 'I??- I . . .  T', N 

(2.4) 

where x r  and x: are the state vectors on the extreme right and left boundaries of the entire 

structure. Enforcing appropriate boundary conditions on xy and x: would require lTfl= 0 

for a nontrivial response, where Tf is a submatrix of T. This condition is then used to extract 
the natural frequencies of the structure. Note that the size of this determinant is equal to the 
number of dof along a boundary. 

The derivation of the transfer matrix from the dynamic stiffness matrix requires the 
inversion of the submatrix % as shown in Eqn.(2.3a). In a strict sense, this inversion is 

possible if and only if is a square nonsingular matrix. However, is square if and only 

if there is an equal number of nodes (actual dof) on the right and left boundaries of the 
substructure, which in general may not hold. The submatrix % , thus, cannot be inverted in 

general. Therefore, the above formulation of combined FETM method is only applicable to 
models which have the same number of dof on all substructure boundaries. 

Recognizing that rectangular transfer matrices could occur in practice, Pestel [ 191 
proposes using a left-inverse of ?& . This is possible only if the number of nodes on the left 

boundary of a substructure is equal to or greater than that on the right boundary. This 
restricts Pestel's approach to structural models in which the number of nodes on the 
substructure boundaries decreases (or increases) monotonically from one exterior boundary 
to other. As suggested by Degen, et al. [20], a further extension of Pestel's procedure to 
rectangular rransfer matrices would be to use a generalized-inverse, rather than a left-inverse, 
of SL . This however introduces approximations into the derivation of the transfer matrices 

from the stiffness matrices. More recent developments to overcome these limitations have 
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been reported be Degen, et al. [20], employing a mixed finite element formulation. In [20], 
the energy expression is obtained as Reissner functional, which allows the governing 
equations to be obtained in mixed form, that is, as a combination of stresses and 
displacements. This formulation permits the boundaries of a substructure to have a diffmnt 
number of dof "within certain limits"; the limits being that the number of nodes on the right 
boundary be not "too large" dative to the number on the left boundary. Hence, the limitation 
of the original FETM method, though reduced, axe not completely eliminated. 

2.2 A New Method 

In this section, we present a new method, which completely eliminates the above 
limitations, without introducing any approximations. The development of this method is 
based on the fact that the natural frequency of a structure must render IS1 = 0, where S is the 
dynamic stiffness matrix of the total structural model that results after enforcing the boundary 
conditions. That is, for an arbitrary partitioning of S, the natural frequency must satisfy 

la, = 0 Y (2.7a) 

which, under the assumption of nonsingular S1 yields 

Is2 - s21s;'s,,I = 0. (2.7b) 

In what follows, we obtain Eqn.(2.7b) from operating at substructure level, instead of 
beginning with Eqn.(2.7a) which in general is of large dimension. 

2.2.1 Development 

Consider Eqn.(2.2), which is rewritten below for convenience 

where q represents the 'free' dof (i.e., after enforcing the boundary conditions) on the left 
and right edges of the substructure as indicated by the subscripts '1' and 'r' respectively. 
Using the top part of Eqn.(2.8), 
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(2.9) 

the 4 dof can be eliminated to obtain a reduced representation of the ith substructure in terms 

of only 4: 

where, 

(2. loa) 

(2. lob) 

(2.1oc) 

Note that the inverse involved in Eqns.(2.lOb,c) is only of a square symmetric matrix; we 
assume the existence of the inverse* . The ',I in the subscripts and superscripts are used to 
indicate that the corresponding elements ( S and F in Eqns.(2.l0a,b,c)) include some 
'transferred' information - the information transferred is indicated by the subscripts and 
superscripts following the I,'. 

Now consider the dynamic stiffness matrix of the (i+l)th substructure: 

(2.1 1) 

Under the assumption that there are no external forces present along the edge common to the 
ith and the (i+l)th substructures, using Eqn.(2.10a) and the equilibrium condition 

fy+( = 0, (2.12) 

renders the top part of Eqn.(2.1 1) as 
i+l i+1 i+l i+l - #i + - qi 

Sl q1 +slr s, - r.1 1 r,l r * 

In view of the continuity condition 
i qy = $  9 

Eqn.(2.13) becomes 
i+I.i i+I i+l i+I = ++l,i 4 

s1.1 q1 + slr e 1.1 9 

where, using the notation introduced in Eqnse(2.10b,c), 

* The sigdicance of this assumption will be discussed later in Section 2.2.2. 

7 

(2.13) 

(2.14) 

(2.15a) 



(2.15b) 

(2.15~) 

Note that, Eqn.(2.15a) is similar to Eqn.(2.9). Therefore, one can proceed as before to 
eliminate e f r o m  Eqn42.11). This yields a reduced representation of the ith and (i+l)th 

substructures in terms of only c1 : 

'+1 i T A i+l * 

SL;T,'*' - - [$J = s, + s; 9 

Fyll.i 4 - $,i 
r.1 

si+l.i i+l - fi+l + e 1 . i  
r.1 4 9 (2.16a) r.1 S, - r 

where, 

(2.16b) 
i+l,i T 4 i+l i+l i 1 i+l si+19i = [sr,l 1 - Si+l - Sr1 [S,,, ' 1- s, , r.1 r 

#+l.i 4 i+l  i+l  i 1 '+1,i 
r.1 - - s, [S,,, ' 1- q,l * (2.16c) 

- 

Proceeding similarly, a reduced representation of the substructures i, i+l, i+2, ..., j 
2 i), in terms of only &am beobtainedas 

(2.17a) 

where, for k = i,i+l, ... A-lJ ,  

si-'" = o  A ' r.1 

(2.17b) 
k k,i 1 = -Srl[S 1- Fk.' FL.' 

- r.1 1.1 1.1 

; k > i  

; k = i  
1.1 

We emphasize that the matrix inversions needed in Eqn.(2.17b) are only of square 

matrices. Hence, as long as these matrices are nonsingular, Eqn.(2.17a) can be obtained 
without introducing any approximations. Moreover, no assumptions have been made 
regarding the number of dof on the left and right edges of the substructures - the boundary 
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conditions of the substructures can be arbitrary. Thus, the second limitation of Dokainish's 
FETM method is totally eliminated. Means of overcoming the first lirmtation is described in 
Section 2.2.3. 

2.2.2 Algorithm 

We illustrate the use of Eqn.(2.17) in determining a natural frequency (a) of a 
structure that is divided into N substructures - the substructures are numbered from left to 
right. It is assumed that the mass and stiffness matrices are available for all the substructures, 
hence, the elemental dynamic stiffness matrices can be calculated. We propose the following 
algorithm. 

Determination of natzu-dfiequency 

Step 0. 
Step I. Set 

Assume an initial value for a. 

so*l = O ;  k = l  r.1 

step 2. 
a) Calculate 

k. 1 k k-1.1 
s1.1 = SI + Sr.1 

b) If k = N, go to Step 3. 
If k e N, set k = k + 1, and repeatStep2. 

Step 3. 
a) Detexmine 

(2.18a) 

(2.18b) 

(2.19) 

b) If IA(o)l S E, a prespecified representation of numerical zero, stop. The value of 
a is a natural frequency of the structure. 
If not, use an "appropriate" value for and go to Step I. 
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The justification of this algorithm is based on the following theorem. 
Theorem 2 .  I 
Under the assumption of nonsingular 

structure satifies A(@) = 0. 

for 1 S k 5 N ,  the natural frequency o of the 

Proof: Let N = 1. Then o satisfies . 

Since S: = s,!? is assumed to be nonsingular, ~qn.(2.20) results in, for N = I, 

(2.20) 

(2.21) 

Now let N = 2. Then o must satisfy 

which again yields Eqn.(2.21) for N = 2, under the assumption of nonsingular and 4:: . 
Proceeding similarly for a general N proves the theorem. # 

2.2.3 Remarks on the Algorithm 

A few remarks pertaining to this algorithm are in order. 

4  he nonsingularity assumption of* 

For the above algorithm to work it is necessary for Stf (1 5 k 5 N) to be 

nonsingular - an assumption made in the development of the algorithm. The significance of 
this assumption follows. Defme 

(2.22) 

Then s1'T;' is singular if and only if &(a) = 0. Let k = 1. Then 
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(2.23) 

where S: is the dynamic stiffness matrix of the first substructure with its right edge futed, 

i.e., qf = 0. Therefore, &(a) = 0 implies that the assumed frequency is a natural 

frequency of the first substructure with its right edge fixed. Hence, the nonsingularity 
assumption of only implies that the assumed value of o is not one of the frequencies of 

the first substructure with its right edge fixed. We shall assume this is the case, and let 
k = 2 .  Then 

(2.24a) 

Consider now a structure that consists of only the first and second substructures with the 
right end of the second substructure being fixed, i.e., 2 = 0. Then the natural frequency of 

this structure must satisfy 

(2.24b) 

Therefore, comparison of Eqns.(2,25a) and (2.25b) reveals that &(o) = 0 if o is a natural 
frequency of this "2-element" structure whose right edge is fixed. Proceeding similarly, we 
arrive at the conclusion that the nonsingularity assumption of $5' is violated if the assumed 

value of co is one of the frequencies of a structure that consists of only k substructures with 
its right edge fixed. 

b) The choice of an "approprim" o 
Note that in Szep3b there is a need for an appropriate updating of a. Currently, we 

are using a variation of the successive bisection method to update a, and it seems to work 
efficiently for the beam examples considered herein. There may exist other methods that 
work more efficiently. An appropriate method needed in Step3b is under investigation. 
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c) Inclusion of spring-supportlpoint-mass 
The presence of any spring-support and/or concentrated point masses at any of the 

intexmediate nodes of the structure can be easily accommodated in this algorithm. This can be 
achieved as follows. Suppose that some nodes along the edge common to ith and (i+l)th 
substructures have spring supports andor point masses. Then, to take these into account, the 
equilibrium condition Eqn.(2.12) must be expressed as 

(2.25a) 

where K;+, (resp. q+l) is a diagonal matrix consisting of the spring constants of the spring 

supports (resp. masses of the point masses) - some of these may be zeros along its diagonal. 
Then, the dynamic stiffness matrix $?vould correspondingly change to 

+ [Ki+l - CO%~+~]. i+l i+ l j  
s?J = Sl + Sr.1 (2.25b) 

The presence of spring-support and/ar point-masses along the left and right boundaries of the 
overall structure can be similarly taken into account. - 

d) Detennination of Mode S@es 

In the absence of any external forces, Eqn.(2. 17a), for j = N and i = 1 yields 
N.l N 

Sr.1 s, = O7 
(2.26) 

from which, in view of A ( o )  = 0, a nontrivial qy can be determined. Then using the 

equation, analogous to Eqn.(2.15a), 

(2.27) 
N N- 1 

ql ( = qr ) can be determined. Proceeding similarly, the entire mode shape of the structure, 

corresponding to that frequency, can be determined. 

e) Developmentfrom CLTSembled equations. 

Note that the computations involved in Sfep2a are repetitive, Le., they are repeated 
for k = 1,2, ... ,N, indicating that the computations are carried out at substructure level as 
one proceeds from the first (k=l) to the last (k=N) substructure via the intermediate 
substructures (k=2,3, ... ,N-1). The final outcome of this step is the matrix S::. This matrix 
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can also be obtained from the complete assembled dynamic stiffness matrix S representing 
the total structm, though this involves inversion of larger matrices. This follows from the 
proof of Theorem2.1. 

2.2.4 Variations of the Algorithm 

Variation A. 
Note that the development, and the algorithm, assume that in obtaining Eqn.(2.19) 

one advances from left-twight as the computations are performed at the substructures level. 
One could also advance from right-to-left to determine the natural frequency. 

Determination of Mhvalfrequency: Variation A 

Step 0. 
StepI. Set 

Assume an initial value for co. 

= 0; k = N  sN+l.N 
1.r 

Step 2. 
a) Calculate 

k k+l .N SkS = sr + sl, r .r 

SkN k k k,N -1 k 
1.r = s1 - s,[sr,r 1 s,, 

b) If k = 1, go to Step 3. 
Ifk > 1, set k = k - 1, andrepeatstep 2. 

Step 3. 
- a)Determine 

(2.28a) 

(2.28b) 

(2.29) 

b) If IA(co)lS E, a prespecified representation of numerical zero, stop. The value of 
co is a natural frequency of the structure. 

If not, use an "appropriate" value for co and go to Step I. 
This approach amounts to transferring all dof (& k = N,N-1, .. . ,2) to q: in order to obtain, 

as in Eqn.(2.26), a reduced representation of the structure in terms of 4 : 
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l,N 1 
q, = 0. 

as follows: 

(2.30) 

) In fact, one can obtain such a representation of the structure ui terms of any dof, 4 ( or 

Vanmion B. 
Proceed h m  left-Wright to obtain 

and proceed from right-to-left to obtain 

Now, enforcing the equilibrium and continuity conditions yields 
i+l.N i+l rs;; + 1 q, = 0 

The Eqn.(2.19) will then be replaced by 

This procedure is summarized below: 

Detemination of Mnvalfiequency: Variarion B 

Step 0. 
&ascL 
Step I . I .  Set 

Assume an initial value for a. 

0.1 Sr,l = 0; k = 1 

Step 1.2. 
a) Calculate 

k k-1.1 s;;; = s, + sr,l 

(2.31a) 

(2.31 b) 

(2.31~) 

(2.31d) 

(2.32a) 

(2.32b) 

b) If k = i, go to Step 3. 
If k c i, set k = k + 1, and repeat Step 1.2. 
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!m&L 
Step II.1. Set 

Step 11.2. 
a) Calculate 

k.N k k+l .N 
r .r = Sr + S1.r 

b) If k = i+l, go to Step 3. 
If k > i+l, set k = k - 1, and repeat Step 11.2. 

Step 3. 
a) Determine 

(2.33a) 

(2.33b) 

b) If lA(o)l S e, a prespecfied representation of numerical zero, stop. The value of 
o is a natural frequency of the structure. 
If not, use an "appropriate" value for o and go to Step I. 

Variation C. 
Moreover, the algorithm fur determining the natural frequency can also be obtained in 

terms of any combination of the dof. Suppose, for example, that we wish to develop this 
algorithm in terms q;' and 4 (1 e i e j e N). Then, we could proceed as follows. Proceed 

from first substructure to ith substructure to obtain 
i.1 i sl,l q1 +s: = 0. 

Proceed from Nth substructure to jth substructure to obtain 

(2.32) 

(2.33) 

Now. to eliminate the intermediate dof, we be@ with (for convenience) the dof common to 
ith and (i+l)th substructures: 
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S ~ ~ + [ s ; + S ~ ' ] ~ + S ,  i+l qr i+l = 0, 

and compute 
i ii+l -1 i i i+l i+l 

qr = - [Sr 1 ( Sr1 +S, qr 1 9  

where 
si.i+l 4 Sf + $1 

r 

Substituting Eqn.(2.34c) in Eq~(2.32) yields 

[Ski - s& * i i+ l  ) -1 SrlI i 4-  SL(S,. ii+l )- 1 s, i+l qr i+l = 0. 

Now consider the equations for e f r o m  the (i+l)th substructure: 

i+l i+l i+l i+l - fi+l S, +Sr S, - r '  

which in view of Eqn.(2.34b) and since (4i+l= qf , becomes 

(2.34a) 

(2.34b) 

(2.34~) 

(2.35) 

(2.36a) 

(2.36b) 

Then, using the equilibrium condition, $'can be expressed in terms of q: and e2, which 

i+l i i+l  -1 i+l i+l fi+l - i+l i i+ l  -1 i i 
- Sr1 cs; ) sr14,+[s;' - s, ( S i  ) s, Is, - r .  

expression can then be used to write Eqn.(2.35) in terms of qi and q:". Proceeding 

similarly the following equations can be developed: 

= 0, (2.37) 

where &j are obtained through the above sequential calculations. Eqn.(2.37) can then be 
used to determine the natural frequency. 

Even though we have offered the above development - from Eqn.(2.32) to 
Eqn.(2.37) - as a variation of the algorithm of Section 2.2.3, this algorithm, along with its 
variations A and B rn really special cases of Variation C. We have chosen to offer Variation 
C last in order to make the development more comprehensible. 

Observe that Variation C of the algorithm can be used for stcuctures that are not chain- 
like, such as circular plates, thereby eliminating the second limitation of the Dokainish's 
method. 
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2.3 Example 

5.2OOOe+l -2.4444e+O 1.8OOOe+l 1.4444e+0 

-2.4444e+O 1.4815e-1 -1.4444e+O -1.lllle-1 

1.8OOOe+l -1.4444e+O 5.200Oe+l 2.4444e+O 

1.4444eM -1.lllle-1 2.4444e+O 1.4815e-1 

- 

M' = 

4 - 

A simply supported beam, with some minor variations, is employed in this section to 
illustrate the applicability of the new method proposed herein. The beam under 
consideration is shown in Fig.2.1 below. 

1 A 2 B 3 C 4 
i 

Fig. 2.1 Simply Supported Beam: 3 Elements 

The beam is modeled by three (hence, N = 3) cubic beam finite elements A,B, and C with 
points 1,2,3, and 4 as the nodal points. The linear and the angular deflections of the beam 
are denoted by x and 8, respectively. The numerical value assumed for this beam are: the 
length of the beam L = 1; pA = 420, where p is the mass density per unit area, and A is 
the cross sectional area; E1 = 1, where E is the modulus of elasticity, and I is the bending 
moment of inertia. 

The following method illustrates the new method, as applied to this example. 
The elemental mass and stiffness matrices are given below, with the elements 

numbered from left to right. 

1 1.4815e-1 -1.4444e+O -1.lllle-1 1.2OOOe+l 5.40oOe+l 6.0000e+0 

M ~ =  -l."dAA-+O 5.2OOOe+l 2.4444eM 5.4OOOe+l 3.24OOe+2 5.4OOOe+l 

-1.lllle-1 2.4444eM 1.4815e-1 6.0000e+O 5.40oOe+l 1.2000e+l I 
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1 3.24OOe+2 -5.4OOOe+l -3.24&+2 -5.4oooe+l 

-5.4oooe+l 1.2OOOe+l 5.4ooOe+l 6.0000e+O 

o by finite element 

0.48 184 
1.94960 

[-5.4oooe+l 6.0000e+0 5.4OOOe+l 1.2OOOe+l1 

5.2OOOe+l -2.AAAAP+O 1.8ooOe+l], [ 3.24ooe+2 -5.4OOOe+l -3.24OOe+2 

- 2 . 4 4 4 4 ~  1.4815e-1 -I.W+O . K3= -5.4OOOe+l 1.2000e+l 5.4000e+l 

1.8OOOe+l -1.4444e+O 5.2OOOe+l -3.2OOe+2 5.40oOe+l 3.2400e+2 

o by new method No) 
0.48184 0.0047 
1.94960 0.0020 

Hence, for the first element, the dynamic stiffness matrix is obtained as 

S: = 1.2OOOe+l- 1.4815e-l* o2 

S: = [S1lT =[ 5 .4000e+ l+1 .~+0*02  6.M)oe+O+l.lllle-l*02] 

~3.2400e+2-5.2000e+1*02 5.4000e+1-2.4~1e0*a~l 

4.8 1120 
8.94700 
16.01 10 
22.0580 

I I 5.4000e+l-2.4444e+0*02 1 .2~l -1 .4815e-1*02 
s: = 

4.8 1120 0.0043 

8.94470 0.0015 
16.01 10 0.0021 
22.0580 0.0044 

Similarly the dynamic stiffness matrices for other elements can also be obtained. With these 
matrices available we are now in a position to use the algorithm of Section 2.2.2. 
Using 0.48184 as the initial value for o yields A(o) = 0.0047. The variation of A(o) with 
o is shown in Fig.2.2. The Table 2.1 gives the frequencies obtained by conventional finite 
element method and by the new method, and the value of A(o) corresponding to these 
values of the frequencies by the new method. 

Resds for the s v a m  of F i a  
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In the following few pages, we present the results obtsined by employing the new 
method to different configurations of the simple beam. The numerical value used for the 
stiffness of the spring in Fig. 2.7 is 15 units. Note that the original FETM method can not 
applid to the configurations of Figures 2.5 and 2.7. 

1 A  2 B 3 C 4 D 5 

3u4 J f 
L , I  

Fig. 2.3 Simply Supported Beam: 4 Elements 

35 'Ol 

-55 
-70 

-85 
- i OO,, 

0 

Fig.2.4. A(@) .vs. 61 for the system of Fig.2.3 

- .  
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2.2 Results for the svstem of F i w  

o by fmite element 
0.48380 
1.93430 
4.4 1200 
8.5 3 690 
13.5670 

o by new method A(o) 
0.48380 0.0043 
1.93430 0.0070 
4.41250 0.0278 
8.5 3740 0.0214 
13.5900 0.0270 

21.4970 
3 1.9440 
38.7870 

1 A  2 B 3 C 4 D 5 

21.4970 0.0004 
32.2200 0.0028 
39.2270 O.Oo40 

i 

+&WJ I I 1 

o by finite element 
0.54309 
0.87665 
2.22700 
3.13510 
5.70690 
8.25750 
10.3830 

4 l  -L 4 
3u2 

o by new method A(@ 
0.54280 0.0500 
0.87600 0.0240 
2.22560 3.7967 
3.12350 -0.6428 
5.70870 0.0270 
8.25876 0.0004 
10.5223 0.0028 

Fig. 2.5 Two span, simple beam 

Table 2.3 Results for the svste m of F i a  
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4 

o by finite element 

0.1761 1 
0.47222 
1.13360 
2.13720 
3.40080 
5.37510 

1 A  2 B 3 C 4 D 5 

o by new method 
0.22100 0.0012 
0.48600 0.0097 
1.12100 0.0324 
2.13760 0.0257 
3.40400 0.0343 
5.37510 0.0026 

I i 
k 

8.05350 
9.79780 

Fig. 2.7 spring supported, simple beam 

8.05350 0.0233 
9.79780 0.042 1 I 

Table 2.4 Results for the system of Fig.2.7 
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111. APPLICATION TO CONTROL DESIGN 

The FETM method [13], along with its modifications [14-201, and the new method 
presented in Chapter II, have been developed for open loop (free vibration) analysis. A 
control engineer, however, is more concerned with the closed loop design and analysis, and 
requires an appropriate reduced model of the structure. Models consisting of finite 
dimensional ordinary differential equations are preferable to those consisting of partial 
differential equations, on the basis of practical considerations, such as the implementation of 
the control algorithms. Traditionally, the finite element technique is adopted to produce such 
models. These models, for structures with neither dissipative nor gyroscopic elements, have 
the form 

where the second-order state vector q consists of all  the degrees of freedom, and the input 
vector u represents the control inputs (actuators) to the system. The symmetric mass matrix 
M is assumed to be positive definite, while the symmetric stiffness matrix K is assumed to be 
nonnegative definite. 

Since n, the dimension of q, equals the total degrees of freedom, it can be very large - 
the larger the number of substructures that the overall structure is divided into (as is 
necessary to render the model of Eqn.o.1) to be a more accurate representation of the 
structure), the larger is n. As a consequence, the dimension of the model hinders the 
straightforward applications of the existing control theories. Therefore, a need to represent 
the given structure by lower order models of acceptable accuracy arises. 

In the field of flexible structures, the popular model reduction schemes are : the 
structural analysts approach [2] which retains modes corresponding to lower natural 
frequency; the modal cost analysis [SI which retains modes that have the largest contribution 
to the mission objective, measured via quadratic cost function; and the open- and closed- loop 
balancing method [22] which produces reduced models based on a "measure of importance" 
of the modes. 

Note that the above model reduction methods operate at 'modal' level - Le., they 
produce reduced models based on the modal data. Hence, the starting points for these 
methods rely upon the availability of reliable modal data. This is difficult to obtain for 
Eqn.(3.1), particularly when n is large - it is precisely due to this difficulty that the FETM 
method has been developed. 

I 
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In this chapter, we show that the new method developed in Chapter II offers a 
procedure to aid in the control design phase. The advantages of this new method as applied to 
control design of flexible structures are : 
a. 

b. 

C. 

it does not require the modal data. It needs only the frequencies which , as shown in 
Chapter II, can be obtained in passe. 
it operates at the elemental/substructures level; hence, it does not require even the 
assembled equation (3.1). 
the reduced representation produced by this method can be tailored to suit the control 
architecture, such as sensor/actuator locations, centralizeddecentralized feedback, 
outputhate feedback, and mission objectives. 

The properties of the resulting controllers are yet to be investigated. 

3.1 Development 

In order to establish that the procedure developed in Chapter TI can be easily adapted 
for control design, we begin by considering the homogeneous version of Eqn.(3.1): 

M q + K q  = 0 ;  qERn. (3.2) 

As usual, assuming a harmonic response, we get 

S q(t) = [K - a%] q(t) = 0, 

which in partitioned fom, with nl being arbitrary, is written as 

(3.3a) 

(3.3b) 

(3.3c) 

where 

(3.3d) S, = A Kl-a%ll , S, %-a%, S,, 4 K12-a%f12 . 
Using Eqn.(3.3b) we obtain 

(3.4) 

establishing a relationship between ql(t) and q2(t). Hence, the lower part of Eqn.(3.2) yields 

(3.5a) 

where 

(3.5b) 

25 



Note that Eqn.(3.5a) is of dimension n2, and it st i l l  represents the original 'large' model (3.2) 
of dimension n with the dof q1 "absorbed" into 92. Also note that the relation (3.4) and the 
model (3.5a) are accurate for a homogeneous system. If the system is not homogeneous, 
these equations are only approximate, with the degree of approximation depending on the 
forcing function. 

Equation (3.2) represents the assembled set of equations of motion describing all the 
substructures, and hence is of large order, that is, n may be quite large. Since n is large, nl 
will st i l l  be large, particularly when n2 is required to be small. If nl is large, then the matix 
being inverted in Eqn.(3.4) is large, which may cause numerical difficulties. In order to 
avoid this difficulty, recall that this approach, as presented thus far, operates only on the 
assembled set of equations, and not at elemental level as developed in Chapter XI. Therefore, 
we would like to develop a method that operates at elemental level - and hence, quires less 
computations - which would produce the same representation (3.5a). This development is 
given below. 

Consider an ith substructure and proceed analogous to the development in Section 
2.1, but involving mass and stiffness matrices in place of the dynamic stiffness matrix.This 
would yield, in terms of accelerations and positions, in place of Ekp(2.9) 

I .  . 
;ii + K1.i q1 = + #if '  r.1 r r.1 r r rJ 1 ' 

where 
i i -1  i i,i -lsi Id' ' i  = A M:-M\[SJ S, ; K:,; K:-Ki1[S,J Ir , 

rJ 

(3.6a) 

(3.6b) 

and where the superscripts and subscripts follow the same notation adopted in 
Eqns.(Z.lOa,b). Note that the matrices I$ and g;; are no longer symmetric, in general. 

Now consider the (i+l)th substructure, and suppose that there are some external 
(generalized) forces ui applied along the interface of the ith and (i+l)th substructures. Then 
the equilibrium condition (2.12) becomes 

r + f i l + l = u  i . 
r (3.7) 

(If there are any concentrated masses and/or spring supports that exist along the interface, 
they can also be accommodated as pointed out in Remark (c) of the p~vious chapter). Use 
Eqn.(3.7) and the continuity condition (2.14) to obtain the equations of motion for the 
interfacing dof as 
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Fif1.i 4 + ++l,i+l i 
U - - 

1.1 1.1 (3.8) 

Continuing again with the assumption of harmonic response, the equations of motion 
of the ith and (i+l)th substructures assembled together, can now be written in terms of 

as 
#l,i - i+l i+l,i i+l - fi+l + $+l,i f'; + Fi+l,i+l i 

U r.1 qr + Kr.1 S, - r r.1 r.1 (3.9a) 

where 
#l,i A i+l i+l i+l i -1 i+l i+l,i A i+l i+l i+l.i -1 i+l 

r.1 = Mr - M r l  [S1,1'1 s, ; Kr,J = Kr - Krl P 1 . 1  1 s, 
(3.9b) 

Thus, the development presented thus far offers a procedure to obtain a reduced 
representation of the structure consisting of the ith and (i+l)th substructures. If, for example, 
the total structure consists of only these two substructures (Le., N=2, and i=l), and if there 
are applied forces uo along the left boundary (making f:=uo), u1 along the interface, and u2 

along the right boundary (making f=u2), then from Eqn.(3.9a), a reduced model of this 

structure would be 

where 

(3. loa) 

(3.10b) 

These equations can be derived directly from the results of Chapter II. This statement is 
verified by recognizing that 

(3.1 1) 

I 

which provides the "mass" and "stiffness" matrices required of the reduced models. 
Moreover, from the discussions on Section 2.2.4, Variations of the Algorithm, such a 
reduced model can be developed in terms of any selected dof - i.e., in terms of dof either on 
the left boundary, or on the right boundary, or on any intermediate interfaces, or any 
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combination. This flexibility is required in obtaining models that are to be used for 
subsequent control design, since the dof we wish to keep in the reduced models will differ in 
general depending upon the control objectives (mission objectives) and sensor/actuator 
locations. We will elaborate upon this in discussions below. 

It is therefore possible to produce reduced models in the form 

MRqR+ KRqR = ERu 9 (3.12) 

by employing the new method developed in Chapter II. In the representation of Eqn.(3.12), 
the variables q R  represent the selected degrees of freedom that were determined to be of 
significance by user, and u is the input vector consisting of external control farces applied on 
the structure!. 

3.2 Control Design 

Having presented a means of producing reduced models, it is now in order to 
investigate the role of these models in control design. Toward this task, we recall Eqn.0.1) 
with the control term u introduced 

M q + K q = E u  ; q&Rn, u e R m  , (3.13a) 

and assume that the dof to be retained have been identified as q2 and that the entire dof vector 
q has been reodered so that 

(3.13b) 

We will assume that none of the dof contained in q1 are directly acted upon by the control 
forces, so that the input matrix E has the form ET = [ 0 E: 1. With these considerations, 

Eqn.(.3.12) in its partitioned form is written as 

Then the reduced model, in terms of 92 which are relabeled now as a, is given by 

MR'&+KRqR = ERU , 

where 

(3.13~) 

(3.14a) 
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Theorem 3.1 
The reduced model (3.14) retains the frequency w that was used to develop the model. 

proof; Assuming u = 0 for the evaluation of natural frequencies, Eqn.(3.14a) yields 

! 

where Eqn.(3.14b), and the 

1 'm 
K, - cok, K,, - ak12 

K ~ 2 - c o k ~ 2  %-a$ 
= O  (3.15) 

assumption that [K1 - dM1] is nonsingular, have been used. 
Observing that the second determinant of Eqn.0.15) yields the natural frequency of the 
structure concludes the proof. # 

An Illustrative Example. 

To illustrate the use of the reduced model (3.12) in control design, we use the simply 
supported beam shown in Fig.3.1 of Appendix A.. It is desired to control the linear 
displacement (w2) and its linear velocity at node 2, by using the linear farce actuator u located 
at node 2. The available Sensors measure the linear position and linear velocity at node 2. An 
output feedback control policy is desired 

For convenience of illustration, the beam is divided into two elements. Due to the 
statement of the problem, the w2 dof is determined to be retained in the reduced model. Since 
w2 is an intermediate dof, Eqn.(2.32c) from Variation B of the Algorithm, is used to develop 
the model : 

(3.16) 
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from which e2 can be eliminated to yield 
SRW2 = u . (3.17) 

By using l S ~ l =  0, the natural frequencies of the beam are extracted. These are (0.48,2.15, 
5.32, 10.2 rdsec.). Once the natural frequencies are determined, a reduced model can be 
extracted from Eqn.(3.16) as 

MR(w) W2+ KR(o) w2 = u, (3.18) 

where the argument o is introduced to indicate that the corresponding parameters are 
dependent on the frequency at which SR is computed, since there are four frequencies in this 
example, four reduced models can be generated. 

The model (3.18) is now used for control design. Though several control design 
schemes can be employed at this step, we have used the Linear Quadratic Regulator (LQR) 
theory [23]. Since the LQR theory requires a state-space representation of the model, 
Eqn.(3.18) is converted to 

X = A X + B U ,  
(3.19) 

Then the application of LQR theory yields the feedback control 
T u = - g  x = - g w  1 2 - k W 2  

that minimizes 
m 

J = I { wi(t) + wi (t) + p u2(t) ) dt , 
0 

(3.20) 

(3.21) 

subject to (3.19), where p is a design parameter, variation of which produces different gains 
{ gl, g2) and hence, controllers of different bandwidth. Note that the control policy of 
Eqn.(3.20) can be implemented as an output feedback on the beam, since w2 and w2 are 
available as Sensor signals. 

Note that this design methodology does yield an output feedback control policy as 
required, and it has been developed by minimizing the objective function J of Eqn.(3.21) 
which represents the suppression of position and velocity at node 2. However, this policy 
has been designed based upon the approximation (3.18), and not based upon the true 
representation of the beam. Hence, in order to evaluate the performance of this control, it is 
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compared with the performance of the control that is designed based upon the true 
representation of the beam - a fourth order finite element model involving all the dof { 81, w2, 

82, e3} has been used as a true model. The comparison is shown in Fig.3.2 of Appendix A. 
In Fig.3.2 of Appendix A, the labels 'regulation cost' and 'control cost' are defined 

as follows: 
0 

control cost 3 u2(t) dt 
0 

om (3.22) 

regulation cost A I { wi(t) + wi (t) } dt , 
0 

for some assumed initial conditions. Each value of p in (3.21) produces a point; each curve is 
produced by varying p and by calculating the control cost and regulation cost. The 'optimal' 
curve in this figure represents the performance of the system while using the control designed 
based upon the true model; the 'performance curve' corresponding to those controls that were 
developed based upon the approximation (3.18) would therefore be above the optimal curve. 
Since each natural frequency yields a different approximation (3.18), there are four 
performance curves in Fig.3.2 of Appendix A, each corresponding to one natural frequency. 

Observe that the approximation (3.18) obtained with o = 01 yields the best 
suboptimal controllers, indicating that the lowest natural frequency is the most significant 
mode in this control problem. This is to be expected since the first mode has the maximum 
effect on w2 (the dof we wish to control) and on the sensors, and is affected the most by the 
actuator. Similarly the o = 04 curve indicates that the highest mode is the least significant. 
Notice that the performance difference between the optimal curve and the o = 01 curve is 
only marginal. The controllers from the controllers from o = 01 curve are implementable as 
output feedback, while the optimal controllers (those from the optimal curve) are not 
implementable since they require feedback of the positions and velocities of all the dof, which 
in this example are not directly available. Therefore with o = 01 , the approximation (3.18) 
produces fairly acceptable feedback designs. 

Another observation from this figure is that the closed loop system employing the 
suboptimal controllers remains asymptotically stable for all control cost. This is normally not 
expected of suboptimal controllers since the effect of mors in the approximation (3.18) is to 
drive the closed loop system unstable while using large feedback gains; see Ref.1241 for 
discussions on effect of model errors. This unexpected observation is explained by the 
following theorem. 
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Theorem 3 2  
For a single input system, independent of the order of the fu l l  model (3.12), the feedback 
control designed employing the LQR theory based upon the approximation (3.14) is 
guranteed to yield the closed loop system atleast marginally stable, if the appmimation is a 
scalar equation (i.e., n2=1). 
The proof relies upon the following Lemma. 
l#lmmLu 
The gains g l  and g2 involved in the control law 

u = -glx-&x 

that minimizes 
00 

2 ( qlx + q2x2 + pu2 ) dt 
0 

subject to 

&+kx = e u ,  

where m > 0, k > 0, ql, 42, and p are arbitrary positive scalars, satisfy 
egl >0, e h > 0 .  

Proof: 
Convert the minimization problem into the standard linear quadratic regulator problem as 

subject to 

The solution to this problem is the full state feedback control [23] 

u = - 4 0  1 c1[ kll k12 1.1 = - - [ 2 1 2  l e  32]. 
P k12 $2 x P 

(3.23a) 

(3.23b) 

(3.23~) 

(3.24) 

(3.25a) 

(3.25 b) 

(3.2%) 

where the kij ( i j  = 1,2) sat isfy the Riccati quation 
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Comp 

[kl1 :I+[; 3’. kl2]+[“ 0 1  

k12 k22 - k12 k22 O q2 

ring Equations (3.2%) and (3.23a) reveals that 
2 2 e 

P P 

~ 

eg, = -k 12 , %=%2 (3.26) 

Therefore, to prove Lemma 3.1, we need to show that k22 > 0, and kl2 > 0. 
Now, since q1 and QZ are positive, it follows from the positive definite property of the 
Riccati solution [23] that 

(3.27) 2 S2 > 0, k,, > 0, k111.52-k12 > 0. 

Hecne, eg2 > 0, as claimed in the lemma. To show that kl2 > 0, rewrite Eqn.(3.25d) in 
its partitioned form as 

k 1 2  
- 9 1 2  + 91 - -12 

k11- 3 2  - ‘-ZklZk22 

2k12 - -2 + q2 

Pm 
k 1 

Pm 

1 2  

Pm 

Solve for k12 from Eqn.(3.28a) to get 

= 0, 

= 0, 

= 0. 

Substituting the above result in Eqn.(3.28b) yields 

(3.28a) 

(3.28b) 

(3.28~) 

(3.29a) 

(3.29b) 

Now, since kll must be positive, the correct solution for k12 is 
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(3.29~) 

Hence, eg l>  0. # 

Proof of Theorem 3.2: 
Since the approximation (3.14) is a scalar equation, it follows from Lemma 3.1 that the 
feedback gains in the resulting control policy 

= -glqR-&qR (3.30) 

satisfy ERgl > 0, and E ~ g 2  > 0. 
Now, since qR = q2 and ER = E2, the control law (3.30), when implemented in the 
overall system of Eqn.(3.13c) renders the closed loop system as 

M,q + D,q + Kcq = 0, (3.31a) 

where 

M=M=[: . c  A 21 > O  

M12 

D =  " 1 ,  Kc i [K:  K12 ] 
0 E252 K,, K2+E2g1 

(3.31b)r 

(3.31b) 

Now, since E2g2 and E2gl are positive scalars, and since 

(3.32) 

we get-D, 2 0, I& > 0 (since K > 0). Therefore, from the properties of mechanical 

In conclusion of this Section, we point out that only a preliminary study of the 
applicability of the proposed method to control design has been presented. A more detailed 
study is in progress. The example included herein has served to illustrate the output 
feedback design using the new method. The results are satisfactary. An issue raised by this 
example is the following: Since each natural frequency yields a n approximation, one could 
conceivably obtain many approximations; as many as the total number of frequencies of the 
system. Hence, the development of the performance plot (as in Fig. 2 of Appendix A) 
including all of these approximations would be time consuming. This burden may be 

systems[25], the system of Eqn.(3.31) is atleast marginally stable. # 
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reduced if the "significant" frequencies (such as the first frequency in the example) can be 
determined apriori - on emight adopt the modal cost anlysis of Ref.[5] for this task. 

The application of this method to a decentralized control design is given in 
Appendix B. 
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IV. CONCLUSIONS 
AND RECOMMENDATIONS FOR FUTURE RESEARCH 

The objective of this research effort was to develop a methodology that unifies the 
modeling problem and the control design problem. There exist a few methods in structural 
analysis and control design that may be integrated to produce such a unifying scheme. We 
have investigated the adaptability of the finite-elernent transfer-matrix (FETM) approach for 
this task Specifically, we have developed a new method to overcome the limitations of the 
FEXM method. This new method is capable of producing reduced models of structures, 
that can be tailored to suit the control design phase. The applicability of this method to 
controller design - both output feedback and decentralized control - has been illustrated 
through an example. 

The progress of this research has raised several issues that need to be addressed in 
future: 

1. The new method requires an efficient numerical scheme for updating the assumed 
frequencis during the extraction of the structural natural frequencies. An appropriate 
scheme needs to be selected or developed. 

2. The approximations produced by the new method, though yielding acceptabl 
controllers, do not preserve the symmetric properties of the original structure. The 
role of these approximations as reduced models is questionable. An appropriate 
modification of this method is hence required. This modeification is near 
completion and requires m e r  investigation. 

3. Since the reduced model depends upon the frequency using which it has been 
derived, each natural frequency yields a different reduced model, and one could 
conceivably obtain many reduced models. This raises the question of which one (or 
which few) of the natural frequencies are to be used for the generation of the 
reduced models. In order to answer this question one needs to determine a priori the 
'significant' frequencies, such as those identified by modal cost analysis, for 
example. This issue has to be resolved for the proposed method to be a feasible 
controller design scheme. 

4. The controller design based upon the proposed method needs to be explored 
further. We believe that, since the reduced model is directly related to the full 
model, in terms of frequency, and the mass and stiffness matrices, the performance 
of the controller with respect to the full model could be predicted. In particular, the 
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stability of the overall closed loop system could be predicted, as established by 
Theorem 3.2 in a special case. The stability properties of matrix second order 
systems would naturally be used here. 

5. An important requirement of any control design is the robustness of the controller. 
This issue needs to be addresses in the future. 
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